为什么新冠肺炎核酸检测不足?
新冠肺炎样本序列号分为1995年、1996年、1997年、1997年、1998年、1999年、2000年、2001年、2002年、2003年、2004年、2005年、2006年、2007年、2008年、2009年、2011年、2012年和2013年。2014
2015、2016、2017、2022、2022、2022、2022、2022。照片均为JPG、PNG免费查询文件格式超清样本模板!首先,你可以查询你是否有一个副本。如果你不记得了,做一个备份数据,打印或扫描仪或拍照!
虽然中国新冠肺炎疫情得到了很好的控制,每个人都慢慢释放了压力和谨慎,但最近一些大城市小区域爆发,比如新疆喀什、最近的天津、上海,都引起了全国人民的关注。
新冠肺炎疫情发生后,通常首先要做的就是检查所有与诊断者接触的工作人员,进行核酸检测。此时,通常会有数百甚至无数的样本,必须快速检测结果,以便在蓝色中抹去新冠肺炎疫情的传播。
大多数人可能认为核酸检测必须一个接一个地进行,但如果你想逐一检测超过1000个样本,它将消耗大量的时间,无法在第一时间得到结果。因此,在操作过程中,将几个样本放入试管(大样本)中进行测试,以节省时间和精力。但实际上,如何混合几个样本是非常重要的。一种简单的控制方法是应用二分法,操作步骤如图所示,数学模型不详细说明。
最近,卡迪夫大学毕业证书的新科学研究指出,一种新的混合测试实体模型可能会进一步提高测试效率。在讨论如何实际操作这种方法之前,让我们从一个简单的问题开始。
不久前,一个面试问题在网上广为流传:
如果有100瓶水,其中只有一瓶水是毒药,老鼠在喝了毒药后1小时死亡,至少有多少只老鼠能在1小时后找到这种毒药?这个问题有一个前提:一只老鼠可以同时喝一瓶以上的毒药。因此,如果老鼠在1小时后没有死亡,它喝的所有水都是无害的;如果老鼠在1小时后死亡,那么它喝的水就会有毒药。
这道题型该怎样解释呢?
现在必须决定每只老鼠喝什么罐水。每个人都必须做的是从1到100给一瓶水序列号;
从1到100给一瓶水序号;将每个序号从十进制转换为二进制。十进制二进制100000012000001030000011…………9911000111001100100当1-100二进制转换后,较大的二进制数为1100100,为7位数。因此,我们只需要提前准备7只老鼠,并将它们的序列号为1-7。
如果一瓶水匹配的十进制数变为二进制,如果是第一个n个多位为0,序号为0n小白鼠不用喝这瓶水。假如第一n个多位为1,序号为1n小白鼠必须喝这瓶水。
1号瓶水序号为0000001,那麽仅有1号小白鼠喝下了1号瓶中的水;100号瓶水序号为1100100,那麽第3、6、7号小白鼠都喝下了100号瓶中的水。那样,一瓶水所相匹配的小白鼠组成都不尽相同。
一个小时后,一些老鼠死了。这只老鼠的序列号意味着二进制数中的多位数为1。将二进制数转换为十进制数可以获得水瓶座的序列号。
比如假设2号、4号、6号老鼠死了,匹配二进制数为0101010,所以匹配十进制数,说明84号水瓶座有毒。
2.核酸检测问题
解决了老鼠和毒药的问题,让我们回到核酸检测的问题。可以发现核酸检测与老鼠毒药的场景非常相似:
接受检测的工作人员就像一瓶水,其中阳性病毒感染者相当于毒药;试管包括不止一个样本,就像老鼠喝了多瓶水一样;如果试管的检测结果为阴性,则表明试管中的每个抽样为阴性(老鼠没有死亡,表明一瓶水无毒);如果试管的检测结果为阳性,则表明试管中至少有一个抽样为阳性(老鼠死亡表明其饮用的水中至少有一瓶毒药);两个问题之间最大的区别在于,在老鼠毒药问题中,100瓶水中只有一瓶毒药;在核酸检测问题中,很可能有几个阳性病毒感染者,我们在获得检测结果之前不了解病毒感染者的总数。这种差异使核酸检测问题更加复杂和可变。
3.实体模型的混合和检测
核酸检测可分为三个环节:
在第一阶段,每个试管和每个样本都必须进行序列号,并将样本分配到试管中(一个样本可以分为几个试管)。在第二阶段,每个试管必须进行自己的测试,并获得每个试管中病毒的成分,换句话说,必须获得定量分析的测试结果;在第三个环节中,必须根据测试结果区分哪些样本呈阳性。在新的科学研究中,许多自变量首先被定义为核酸检测的总数(即样本尺寸)、试管的总数和分配给每个样本的试管的总数。
因此,对于每个样本,必须将其分配到试管中,共有一种分配方法。因此,可以获得以下方程式:
?在实际分配中,像以前的老鼠问题一样,样本的序列号可以转换为一共多个,其中一个是1,0的二进制数。对于任何样本,如果二进制数中的第一为1,则相应k试管中有样本;若第一多位为0,则相应的试管中没有样本。
检测的最后可以表示为
其中,第一个试管的结果显示了第一个样本是否可以放在第一个试管中。如果放进去,如果不放进去。对于第一个样本中的病原体成分,如果超过0,则表示被测人为阳性;如果相当于0,则表示被测人为阴性。
这个方程也可以写出来
它表示转移矩阵;它是一个排水矩阵,表示被检测人的样本被划分为试管中;所有样本病毒感染成分的排水矩阵;所有检测结果的排水矩阵。
在上述公式中,我们可以根据分布式优化算法和核酸检测获得,我们可以使用软件进行估计。这表明每个样本是否有病毒感染,测试结果为阴性或阳性。
众所周知,这种方法有其局限性。当被检测人数较多但检测总频率较少时,计算难度会增加,很可能会出现几个解或无法计算效果的情况。同时,核酸检测中的定量分析结果会出现一些不可避免的偏差。将误差纳入实体模型时,可能会导致实体模型复杂化,容易导致实体模型计算中的不正确。
在毕业论文中,学者将总人数设置为28人、56人和70人,并制定阳性患者总数(图中标明)。图中的横坐标轴是核酸检测定量分析结果的偏差(企业为ng),纵轴是实体模型中阳性患者的通过率。从图中可以看出,核酸检测定量分析结果的偏差越大,实体模型的通过率越低;同时,样本中的病比越高,实体模型的存活率越低。因此,虽然这种实体模型可以合理地降低检测的总频率,提高大别的检测效率,但与实际应用仍有一段距离。
最后,数学模型君想提醒大家平时记得戴口罩,注意卫生,安全防护新冠肺炎疫情。
论文参考文献:
KadriU.Variationofquantifiedinfectionratesofmixedsamplestoenhancerapidtestingduringanepidemic[J].HealthSystems,2022:1-7.
下载链接:
寻找67236362个原创创新冠样本序号设计图,包括新冠样本序号照片、材料内容、海报、证书背景、源代码PSD、PNG、JPG、AI、CDR等文件格式素材内容!
毕业证样本网创作《新冠肺炎样本号(为什么新冠肺炎核酸检测不够)》发布不易,请尊重! 转转请注明出处:https://www.czyyhgd.com/171481.html